Approximate Gram-Matrix Interpolation for Wideband Massive MU-MIMO

نویسندگان

  • Zequn Li
  • Charles Jeon
  • Christoph Studer
چکیده

A broad range of linear and non-linear equalization and precoding algorithms for wideband massive multi-user (MU) multiple-input multiple-output (MIMO) wireless systems that rely on orthogonal frequencydivision multiplexing (OFDM) or single-carrier frequency-division multiple access (SC-FDMA) requires the computation of the Gram matrix for each active subcarrier, which results in excessively high computational complexity. In this paper, we propose novel, approximate algorithms that reduce the complexity of Grammatrix computation for linear equalization and precoding by exploiting correlation across subcarriers. We analytically show that a small fraction of Gram-matrix computations in combination with approximate interpolation schemes are sufficient to achieve near-optimal error-rate performance at low computational complexity in wideband massive MU-MIMO systems. We furthermore demonstrate that the proposed methods exhibit improved robustness against channel-estimation errors compared to exact Gram-matrix interpolation algorithms that typically require high computational complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit vs. Explicit Approximate Matrix Inversion for Wideband Massive MU-MIMO Data Detection

Massive multi-user (MU) MIMO wireless technology promises improved spectral efficiency compared to that of traditional cellular systems. While datadetection algorithms that rely on linear equalization achieve near-optimal error-rate performance for massive MU-MIMO systems, they require the solution to large linear systems at high throughput and low latency, which results in excessively high rec...

متن کامل

Linear Precoding with Low-Resolution DACs for Massive MU-MIMO-OFDM Downlink

We consider the downlink of a massive multiuser (MU) multiple-input multiple-output (MIMO) system in which the base station (BS) is equipped with low-resolution digitalto-analog converters (DACs). As opposed to recent results for such BS architectures, we assume that the system operates over a frequency-selective wideband channel and uses orthogonal frequency division multiplexing (OFDM) to sim...

متن کامل

Semi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system

‎Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems‎. ‎In this paper‎, ‎we propose a semi-blind downlink channel estimation method for massive MIMO system‎. ‎We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...

متن کامل

A Platform for At-Scale Wideband UHF MU-MIMO Systems

We present a Multi-User MIMO (MU-MIMO) array utilizing the Wideband UHF Radio daughter-Card (WURC), a new open platform for at-scale MU-MIMO transmissions in the UHF band up to 1 Watt over up to 28 MHz of programmable channel bandwidth. Using this platform, we demonstrate an application that measures and displays wideband MU-MIMO channel estimates and capacity for both UHF and 2.4 GHz WiFi chan...

متن کامل

VLSI Design of a Nonparametric Equalizer for Massive MU-MIMO

Linear minimum mean-square error (L-MMSE) equalization is among the most popular methods for data detection in massive multi-user multiple-input multiple-output (MUMIMO) wireless systems. While L-MMSE equalization enables near-optimal spectral efficiency, accurate knowledge of the signal and noise powers is necessary. Furthermore, corresponding VLSI designs must solve linear systems of equation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1610.00227  شماره 

صفحات  -

تاریخ انتشار 2016